skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ramanathan, Ranjith"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Analyzing sequential data is crucial in many domains, particularly due to the abundance of data collected from the Internet of Things paradigm. Time series classification, the task of categorizing sequential data, has gained prominence, with machine learning approaches demonstrating remarkable performance on public benchmark datasets. However, progress has primarily been in designing architectures for learning representations from raw data at fixed (or ideal) time scales, which can fail to generalize to longer sequences. This work introduces a \textit{compositional representation learning} approach trained on statistically coherent components extracted from sequential data. Based on a multi-scale change space, an unsupervised approach is proposed to segment the sequential data into chunks with similar statistical properties. A sequence-based encoder model is trained in a multi-task setting to learn compositional representations from these temporal components for time series classification. We demonstrate its effectiveness through extensive experiments on publicly available time series classification benchmarks. Evaluating the coherence of segmented components shows its competitive performance on the unsupervised segmentation task. 
    more » « less